4.7 Article

Observational constraints on interacting quintessence models -: art. no. 063523

Journal

PHYSICAL REVIEW D
Volume 71, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.71.063523

Keywords

-

Ask authors/readers for more resources

We determine the range of parameter space of an Interacting Quintessence Model that best fits the recent WMAP measurements of Cosmic Microwave Background temperature anisotropies. We only consider cosmological models with zero spatial curvature. We show that if the quintessence scalar field decays into cold dark matter at a rate that brings the ratio of matter to dark energy constant at late times, the cosmological parameters required to fit the CMB data are: dark energy density Omega(x) = 0.43 +/- 0.12, baryon fraction Omega(b) = 0.08 +/- 0.01, slope of the matter power spectrum at large scales n(s) = 0.98 +/- 0.02 and Hubble constant H-0 = 56 +/- 4 km/s/Mpc. The data prefers a dark energy component with a dimensionless decay rate parameter c(2) = 0.005 and noninteracting models are consistent with the data only at the 99.9% confidence level. Using the Bayesian Information Criteria we show that this extra parameter fits the data better than models with no interaction. The quintessence equation of state parameter is less constrained; i.e., the data sets an upper limit w(x) <= -0.86 at the same level of significance. When the WMAP anisotropy data are combined with supernovae,data, the density parameter of dark energy increases to Omega(x) similar or equal to 0.68 while c(2) augments to 6.3 x 10(-3). Models with quintessence decaying into dark matter provide a clean explanation for the coincidence problem and are a viable cosmological model, compatible with observations of the CMB, with testable predictions. Accurate measurements of baryon fraction and/or of matter density independent of the CMB data, would support/disprove these models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available