4.3 Article

Increased precision of microbial RNA quantification using NASBA with an internal control

Journal

JOURNAL OF MICROBIOLOGICAL METHODS
Volume 60, Issue 3, Pages 343-352

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mimet.2004.10.011

Keywords

quantitative NASBA; Karenia brevis; IC-NASBA

Ask authors/readers for more resources

Detection and quantification of low abundance target RNA has wide utility in the fields of clinical diagnostics, environmental monitoring, gene expression analysis, and biodefense. Nucleic acid based sequence amplification (NASBA) is an isothermal amplification method that provides the sensitivity needed for these applications. However, the requirement for three separate enzymes in NASBA often results in a greater variability between replicate samples than that seen in PCR-based assays. To overcome this problem, we have adapted the bioMerieux Nuclisens Basic Kit and Nuclisens EasyQ Analyzer along, with the introduction of a synthetic internal control RNA (IC-RNA) for quantification of potentially any RNA sequence. Using the rbcL gene from the Florida red tide organism Karenia brevis as our target, we describe a simple method to accurately quantity the native target by computing the ratio of the time to positivity (TTP) values for both the wild-type and IC-RNA, and plotting this ratio against the starting number of target molecules or cells. By utilizing this simple method, we have significantly increased our accuracy and precision of prediction over the standard TTP calculations. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available