4.2 Article

ANALYSIS OF AN INTERNAL FIXATION OF A LONG BONE FRACTURE

Journal

JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY
Volume 5, Issue 1, Pages 89-103

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219519405001333

Keywords

Bone fracture; modulus; stress shielding; stiffness graded material; finite element analysis

Ask authors/readers for more resources

A major concern when a fractured bone is fastened by stiff-plates to the bone on its tensile surface is excessive stress shielding of the bone. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays bone healing. Likewise, the tensile stress shielding of the healed bone underneath the plate also does not enable it to recover its tensile strength. Initially, the effect of a uniaxial load and a bending moment on the assembly of bone and plate is investigated analytically. The calculations showed that the screws near the fracture site transfers more load than the screws away from the fracture site in axial loading and it is found that less force is required when the screw is placed near to fracture site than the screw placed away from the fracture site to make the bone and plate bend with same radius of curvature when subjected to bending moment. Finally, the viability of using a stiffness graded bone-plate as a fixator is studied using finite element analysis (FEA): the stiffness-graded plate cause less stress-shielding than stainless steel plate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available