4.7 Article

Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: A Grand Canonical Monte Carlo simulation study of hysteresis

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1854129

Keywords

-

Ask authors/readers for more resources

This numerical simulation paper focuses on the adsorption/desorption of water in disordered mesoporous silica glasses (Vycor-like). The numerical adsorbent was previously obtained by off lattice method, and was shown to reproduce quite well the micro- and mesotextural properties of real Vycor, as well as morphological (pore size distribution) and topological (pore interconnections) disorder. The water-water interactions are described by the SPC model while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption/desorption isotherms and the configurational energies are calculated by the Grand Canonical Monte Carlo simulation method. The low pressure results compare well with experiments, showing the good transferability of the intermolecular potential. It is shown that if the hysteresis loop observed in the adsorption/desorption isotherm is considered as a true phase transition (which is actually still an open question in the case of disordered porous materials), then it is possible to calculate the grand potential by applying the thermodynamic integration scheme. The grand potential is shown to be multivalued for low (subcritical) temperature, and continuous for high (supercritical) temperature. A coexistence point is found within the hysteresis loop, actually close to the vertical desorption line. Below the equilibrium chemical potential, the gaslike branch is stable whereas the liquidlike branch is metastable. The situation is reversed above the coexistence point. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available