3.8 Article

Geologic controls of submarine groundwater discharge: application of remote sensing to north Lebanon

Journal

ENVIRONMENTAL GEOLOGY
Volume 47, Issue 4, Pages 512-522

Publisher

SPRINGER
DOI: 10.1007/s00254-004-1172-3

Keywords

submarine springs; water resources; coastal area; TIR; satellite images

Ask authors/readers for more resources

Typical of Mediterranean countries, the Lebanese shoreline is well known for its littoral and off-shore groundwater discharges, the so-called submarine springs. The tectonic framework of the terrain explains its interruption by dense geologic structures, i.e., fracturing, faulting, karstic routes, as well as acute dips of rock strata seaward. All of these structures serve as hydrologic agents transporting groundwater to the sea. The study aims to locate these groundwater discharges, and to interpret their geologic controls on land. For this purpose, two major lines of approach were followed. The first is an airborne thermal infrared (TIR) survey using radiometers to identify thermal anomalies, thereby determining the exact location of submarine groundwater discharges (SGDs). The second line of approach is the analysis of satellite images (Landsat 7ETM(+)) to delineate the geologic features that govern the mechanism of water flow, thereby determining their sources on land. Twenty-seven major SGDs were identified, 10 of these being offshore springs, the others littoral springs. The springs show a large variety of discharge configurations and extents, mainly parallel or perpendicular to the shoreline or rounded. Three major structural controls were identified to contribute to the transport of groundwater to the sea. These are karstic galleries, faults, and tilted rock strata, their contributions being 48, 37, and 15%, respectively. The SGDs associated with linear passageways, i.e., karstic galleries and faults, are connected with land aquifer formations several kilometers away from the shoreline. Moreover, the presence of impervious rock formations at many localities along the coastline results in a confined hydrologic system, promoting the flow of SGDs into the sea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available