4.4 Article

Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway:: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein

Journal

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Volume 10, Issue 2, Pages 131-137

Publisher

SPRINGER
DOI: 10.1007/s00775-004-0619-z

Keywords

2-C-Methyl-D-erythritol 4-phosphate pathway; GcpE; iron-sulfur cluster; isoprenoid biosynthesis; Mossbauer spectroscopy

Ask authors/readers for more resources

The mevalonate-independent methylerythritol phosphate pathway is widespread in bacteria. It is also present in the chloroplasts of all phototrophic organisms. Whereas the first steps, are rather well known, GcpE and LytB, the enzymes catalyzing the last two steps have been much less investigated. 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate is transformed by GcpE into 4-hydroxy-3-methylbut-2-enyl diphosphate, which is converted by LytB into isopentenyl diphosphate or dimethylallyl diphosphate. Only the bacterial GcpE and LytB enzymes have been investigated to some extent, but nothing is known about the corresponding plant enzymes. In this contribution, the prosthetic group of GcpE from the plant Arabidopsis thaliana and the bacterium Escherichia coli has been fully characterized by Mossbauer spectroscopy after reconstitution with (FeCl3)-Fe-57, Na2S and dithiothreitol. It corresponds to a [4Fe-4S] cluster, suggesting that both plant and bacterial enzymes catalyze the reduction of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2- enyl diphosphate via two consecutive one-electron transfers. In contrast to the bacterial enzyme, which utilizes NADPH/.avodoxin/flavodoxin reductase as a reducing shuttle system, the plant enzyme could not use this reduction system. Enzymatic activity was only detected in the presence of the 5-deazaflavin semiquinone radical.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available