4.7 Article

Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene

Journal

PLANT CELL AND ENVIRONMENT
Volume 28, Issue 3, Pages 269-277

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2005.01324.x

Keywords

heat stress; isoprene; photosynthesis; reactive oxygen species; rubisco; thylakoid reactions

Categories

Ask authors/readers for more resources

Photosynthesis is particularly sensitive to heat stress and recent results provide important new insights into the mechanisms by which moderate heat stress reduces photosynthetic capacity. Perhaps most surprising is that there is little or no damage to photosystem II as a result of moderate heat stress even though moderate heat stress can reduce the photosynthetic rate to near zero. Moderate heat stress can stimulate dark reduction of plastoquinone and cyclic electron flow in the light. In addition, moderate heat stress may increase thylakoid leakiness. At the same time, rubisco deactivates at moderately high temperature. Relationships between effects of moderate heat on rubisco activation and thylakoid reactions are not yet clear. Reactive oxygen species such as H2O2 may also be important during moderate heat stress. Rubisco can make hydrogen peroxide as a result of oxygenase side reactions and H2O2 production by rubisco was recently shown to increase substantially with temperature. The ability to withstand moderately high temperature can be improved by altering thylakoid lipid composition or by supplying isoprene. In my opinion this indicates that thylakoid reactions are important during moderate heat stress. The deactivation of rubisco at moderately high temperature could be a parallel deleterious effect or a regulatory response to limit damage to thylakoid reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available