4.8 Article

2. Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters

Journal

WATER RESEARCH
Volume 39, Issue 6, Pages 1025-1036

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2004.11.031

Keywords

pyrolysis-GC/MS; disinfection by-products; wastewater; trihalomethane; haloacetic acid

Ask authors/readers for more resources

In this study, the chemical reactivity with chlorine as measured by disinfection by-product formation potential (DBPFP) is compared among samples of a wastewater effluent and surface waters. Water samples that had higher anthropogenic impacts were found to have higher overall DBPFP due primarily to higher dissolve organic carbon (DOC) concentrations. Effluent-derived organic matter (EfOM), however, was found to be less reactive with chlorine on a per DOC concentration basis. Yet, EfOM had higher proportions of brominated DBP, which may be associated with greater health risks. In this research, pyrolysis-GC/MS was used to establish relationship between structural features of DOC and DBPFP. We show that there is a critical set of pyrolysis fragments that separates the waters based on the degree of anthropogenic influence. Even though no single chemical marker was found to be indicative of the formation potentials of different classes of DBP, combinations of chemical fragments were found to be associated with the formation potentials of total trihalomethane (THM), brominated THM, total haloacetic acid (HAA), and brominated HAA for this set of samples. In contrast to previous work, the phenolic signature of these samples was negatively correlated to DBPFP, whereas strong relationships were found between DBPFP and the organic nitrogen and halogenated signatures. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available