4.5 Article Proceedings Paper

Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions

Journal

AIAA JOURNAL
Volume 43, Issue 3, Pages 586-594

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.8611

Keywords

-

Ask authors/readers for more resources

Reynolds-averaged Navier-Stokes (RANS) methods often cannot predict shock/turbulence interaction correctly. This may be because RANS models do not account for the unsteady motion of the shock wave that is inherent in these interactions. Previous work proposed a shock-unsteadiness correction that significantly improves prediction of turbulent kinetic energy amplification across a normal shock in homogeneous isotropic turbulence. We generalize the modification to shock-wave/turbulent boundary-layer interactions and implement it in the k-is an element of, k-omega, and Spalart-Allmaras models. In compression-corner flows, the correction decreases the turbulent kinetic energy amplification across the shock compared to the standard k-is an element of and k-omega models. This results in improved prediction of the separation shock location, delayed reattachment, and slower recovery of the boundary layer on the ramp. For the Spalart-Allmaras model, the modification amplifies eddy viscosity across the shock, moving the separation location closer to the experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available