4.6 Article Proceedings Paper

Robust Bayesian mixture modelling

Journal

NEUROCOMPUTING
Volume 64, Issue -, Pages 235-252

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2004.11.018

Keywords

student-t distribution; variational inference; model selection; outliers; latent variable model

Ask authors/readers for more resources

Bayesian approaches to density estimation and clustering using mixture distributions allow the automatic determination of the number of components in the mixture. Previous treatments have focussed on mixtures having Gaussian components, but these are well known to be sensitive to outliers, which can lead to excessive sensitivity to small numbers of data points and consequent over-estimates of the number of components. In this paper we develop a Bayesian approach to mixture modelling based on Student-t distributions, which are heavier tailed than Gaussians and hence more robust. By expressing the Student-t distribution as a marginalization over additional latent variables we are able to derive a tractable variational inference algorithm for this model, which includes Gaussian mixtures as a special case. Results on a variety of real data sets demonstrate the improved robustness of our approach. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available