4.6 Article

Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2004-0242OC

Keywords

asbestos; growth factors; signal transduction; cell death; pulmonary epithelium

Ask authors/readers for more resources

Asbestos induces alveolar epithelial cell (AEC) DNA damage and apoptosis by the mitochondria-regulated death pathway and oxidative stress. Fibroblast growth factor-10 (FGF-10), an alveolar epithelial type II cell mitogen that is required for the lung development, prevents H2O2-induced AEC DNA damage by a mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-dependent mechanism. In this study, we show that FGF-10 attenuates asbestos-induced AEC DNA strand break formation and apoptosis. MAPK/ERK kinase (MEK) inhibitors, U0126 or PD98059, each blocked the protective effect of FGF-10 against asbestos-induced DNA damage and apoptosis, whereas a p38-MAPK inhibitor had a negligible effect, suggesting a crucial role for MEK/ERK activation in mediating the protective effects of FGF-10. Further, we show that FGF-10 attenuates asbestos-induced change in AEC mitochondrial membrane potential and caspase 9 activation, both of which are blocked by U0126. We conclude that FGF-10 decreases asbestos-induced AEC DNA damage and apoptosis in part by mechanisms involving MEK/ERK-dependent signaling that affects the mitochondria-regulated death pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available