4.7 Article

Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 98, Issue 2, Pages 651-660

Publisher

SPRINGER
DOI: 10.1007/s00253-013-4846-5

Keywords

omega-Transaminase; D-Amino acid; Substrate specificity; Asymmetric synthesis; Active site model

Funding

  1. Advanced Biomass RD Center [ABC-2010-0029737]
  2. National Research Foundation of Korea [2010-0024448]
  3. Ministry of Education, Science and Technology
  4. National Research Foundation of Korea [2011-0031361] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

omega-Transaminase (omega-TA) is one of the important biocatalytic toolkits owing to its unique enzyme property which enables the transfer of an amino group between primary amines and carbonyl compounds. In addition to preparation of chiral amines, omega-TA reactions have been exploited for the asymmetric synthesis of l-amino acids using (S)-selective omega-TAs. However, despite the availability of (R)-selective omega-TAs, catalytic utility of the omega-TAs has not been explored for the production of d-amino acids. Here, we investigated the substrate specificity of (R)-selective omega-TAs from Aspergillus terreus and Aspergillus fumigatus and demonstrated the asymmetric synthesis of d-amino acids from alpha-keto acids. Substrate specificity toward d-amino acids and alpha-keto acids revealed that the two (R)-selective omega-TAs possess strict steric constraints in the small binding pocket that precludes the entry of a substituent larger than an ethyl group, which is reminiscent of (S)-selective omega-TAs. Molecular models of the active site bound to an external aldimine were constructed and used to explain the observed substrate specificity and stereoselectivity. alpha-Methylbenzylamine (alpha-MBA) showed the highest amino donor reactivity among five primary amines (benzylamine, alpha-MBA, alpha-ethylbenzylamine, 1-aminoindan, and isopropylamine), leading us to employ alpha-MBA as an amino donor for the amination of 5 reactive alpha-keto acids (pyruvate, 2-oxobutyrate, fluoropyruvate, hydroxypyruvate, and 2-oxopentanoate) among 17 ones tested. Unlike the previously characterized (S)-selective omega-TAs, the enzyme activity of the (R)-selective omega-TAs was not inhibited by acetophenone (i.e., a deamination product of alpha-MBA). Using racemic alpha-MBA as an amino donor, five d-amino acids (d-alanine, d-homoalanine, d-fluoroalanine, d-serine, and d-norvaline) were synthesized with excellent product enantiopurity (enantiomeric excess > 99.7 %).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available