4.7 Article

Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 98, Issue 7, Pages 3133-3141

Publisher

SPRINGER
DOI: 10.1007/s00253-013-5306-y

Keywords

Biosorption; Dye; Fungi; Isotherm; Kinetics; Triphenylmethane

Ask authors/readers for more resources

This study focuses on the possible use of Aspergillus fumigatus to remove acid violet 49 dye (AV49) from aqueous solution. In batch biosorption experiments, the highest biosorption efficiency was achieved at pH 3.0, with biosorbent dosage of 3.0 gL(-1) within about 30 min at 40 A degrees C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of AV49 onto fungal biomass with maximum dye uptake capacity 136.98 mg g(-1). Biosorption followed a pseudo-second-order kinetic model with high correlation coefficients (R (2) > 0.99), and the biosorption rate constants increased with increasing temperature. Thermodynamic parameters indicated that the biosorption process was favorable, spontaneous, and endothermic in nature, with insignificant entropy changes. Fourier transform infrared spectroscopy strongly supported the presence of several functional groups responsible for dye-biosorbent interaction. Fungal biomass was regenerated with 0.1 M sodium hydroxide and could be reused a number of times without significant loss of biosorption activity. The effective decolorization of AV49 in simulated conditions indicated the potential use of biomass for the removal of color contaminants from wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available