4.8 Article

Solution structure of an arabidopsis WRKY DNA binding domain

Journal

PLANT CELL
Volume 17, Issue 3, Pages 944-956

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.104.026435

Keywords

-

Ask authors/readers for more resources

The WRKY proteins comprise a major family of transcription factors that are essential in pathogen and salicylic acid responses of higher plants as well as a variety of plant-specific reactions. They share a DNA binding domain, designated as the WRKY domain, which contains an invariant WRKYGQK sequence and a CX4-5CX22-23HXH zinc binding motif. Herein, we report the NMR solution structure of the C-terminal WRKY domain of the Arabidopsis thaliana WRKY4 protein. The structure consists of a four-stranded beta-sheet, with a zinc binding pocket formed by the conserved Cys/His residues located at one end of the beta-sheet, revealing a novel zinc and DNA binding structure. The WRKYGQK residues correspond to the most N-terminal beta-strand, kinked in the middle of the sequence by the Gly residue, which enables extensive hydrophobic interactions involving the Trp residue and contributes to the structural stability of the beta-sheet. Based on a profile of NMR chemical shift perturbations, we propose that the same strand enters the DNA groove and forms contacts with the DNA bases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available