4.7 Article

Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells

Journal

STEM CELLS
Volume 23, Issue 3, Pages 424-432

Publisher

WILEY
DOI: 10.1634/stemcells.2004-0199

Keywords

retinal progenitor cells; ciliary neurotrophic factor; bipolar; glial; differentiation

Funding

  1. NEI NIH HHS [EY09595] Funding Source: Medline

Ask authors/readers for more resources

Ciliary neurotrophic factor (CNTF) has been shown to be a potent regulator of retinal cell differentiation. The present study was undertaken to investigate the effects of CNTF on in vitro differentiation of expanded late retinal progenitor cells. Retinal progenitor cells used in these studies were isolated from the neural retina of postnatal day-1 green fluorescent protein (GFP) transgenic mice. The resulting GFP-positive neurospheres were dissociated into a single-cell suspension and grown on poly-D-lysine/laminin-coated tissue culture flasks or slides to generate adherent retinal progenitor cells. These adherent cells were treated with 20 ng/ml of CNTF for up to 14 days, and expression of specific retinal cell markers was determined by immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and immunoblot analysis. In vitro studies showed that CNTF treatment of late retinal progenitor cells resulted in changes in cellular morphology. Immunocytochemical studies showed an increase in the proportion of cells expressing markers of bipolar cells but not rod differentiation. In addition, an increase in the proportion of cells expressing glial cell markers was observed. RT-PCR analysis showed downregulation in Hes1, Nestin, Notch1, and Pax6 transcripts along with a concomitant increase in protein kinase C (PKC) alpha and glial fibrillary acidic protein (GFAP) transcripts. These findings were confirmed by immunoblot analysis, where downregulation in Nestin expression and simultaneous upregulation in PKC alpha and GFAP were observed. The data indicate that CNTF treatment of multipotential late retinal progenitors increases the proportion of cells that express markers of bipolar neurons and glia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available