4.7 Article

Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 95, Issue 4, Pages 1083-1094

Publisher

SPRINGER
DOI: 10.1007/s00253-012-4197-7

Keywords

Elementary mode analysis; Metabolic pathway analysis; Metabolic pathway design; Metabolic pathway alignment; Fermentation; Advanced biofuels; Isobutanol; n-Butanol; Ethanol; Rational strain design; Cofactor engineering

Funding

  1. lab startup fund
  2. SEERC seed fund

Ask authors/readers for more resources

Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these defective metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (similar to 8-9 genes), addition (similar to 6-7 genes), up- and downexpression (similar to 6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in core metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available