4.6 Article

A clostridial endo-β-galactosidase that cleaves both blood group A and B glycotopes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 9, Pages 7720-7728

Publisher

ELSEVIER
DOI: 10.1074/jbc.M414099200

Keywords

-

Ask authors/readers for more resources

We have isolated an endo-beta-galactosidase designated E-ABase from Clostridium perfringens ATCC 10543 capable of liberating both the A trisaccharide (A-Tri; GalNalpha1-->3(Fucalpha1-->2)Gal) and B trisaccharide (B-Tri; Galalpha1-->3( Fucalpha1-->2)Gal) from glycoconjugates containing blood group A and B glycotopes, respectively. We have subsequently cloned the gene (eabC) that encodes E-ABase from this organism. This gene was found to be identical to the CPE0329 gene of C. perfringens strain 13, whose product was labeled as a hypothetical protein (Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., and Hayashi, H. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 996 - 1001). Since the amino acid sequence of E-ABase does not bear detectable similarity to any of the 97 existing families of glycoside hydrolases, we have proposed to assign this unusual enzyme to a new family, GH98. We also expressed eabC in Escherichia coli BL21(DE3) and obtained 27 mg of fully active recombinant E-ABase from 1 liter of culture. Recombinant E-ABase not only destroyed the blood group A and B antigenicity of human type A and B erythrocytes, but also released A-Tri and B-Tri from blood group A (+)- and B+-containing glycoconjugates. The structures of A-Tri and B-Tri liberated from A(+) porcine gastric mucin and B+ human ovarian cyst glycoprotein were established by NMR spectroscopy. The unique specificity of E-ABase should make it useful for studying the structure and function of blood group A- and B-containing glycoconjugates as well as for identifying other glycosidases belonging to the new GH98 family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available