4.6 Article

Dissemination of lipid A deacylases (PagL) among gram-negative bacteria - Identification of active-site histidine and serine residues

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 9, Pages 8248-8259

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M414235200

Keywords

-

Ask authors/readers for more resources

Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli. The outer membrane-localized lipid A 3-O-deacylase, encoded by the pagL gene of Salmonella enterica serovar Typhimurium, removes the fatty acyl chain from the 3 position of lipid A. Although a similar activity was reported in some other Gram-negative bacteria, the corresponding genes could not be identified. Here, we describe the presence of pagL homologs in a variety of Gram-negative bacteria. Although the overall sequence similarity is rather low, a conserved domain could be distinguished in the C-terminal region. The activity of the Pseudomonas aeruginosa and Bordetella bronchiseptica pagL homologs was confirmed upon expression in Escherichia coli, which resulted in the removal of an R-3-hydroxymyristoyl group from lipid A. Upon deacylation by PagL, E. coli lipid A underwent another modification, which was the result of the activity of the endogenous palmitoyl transferase PagP. Furthermore, we identified a conserved histidine-serine couple as active site residues, suggesting a catalytic mechanism similar to serine hydrolases. The biological function of PagL remains unclear. However, because PagL homologs were found in both pathogenic and nonpathogenic species, PagL-mediated deacylation of lipid A probably does not have a dedicated role in pathogenicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available