4.7 Article

Structures and stabilities of diacetylene-expanded polyhedranes by quantum mechanics and molecular mechanics

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 70, Issue 5, Pages 1671-1678

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo0479819

Keywords

-

Ask authors/readers for more resources

The structures, heats of formation, and strain energies of diacetylene (buta-1,3-diynediyl) expanded molecules have been computed with ab initio and molecular mechanics calculations. Expanded cubane, prismane, tetrahedrane, and expanded monocyclics and bicyclics were optimized at the HF/6-31G(d) and B3LYP/6-31G(d) levels. The heats of formation of these systems were obtained from isodesmic equations at the HF/6-31G(d) level. Heats of formation were also calculated from Benson group equivalents. The strain energies of these expanded molecules were estimated by several independent methods. An adapted MM3* molecular mechanics force field, specifically parametrized to treat conjugated acetylene units, was employed for one measure of strain energy and as an additional method for structural analysis. Expanded dodecahedrane and icosahedrane were calculated by this method. Expanded molecules were considered structurally in the context of their potential material applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available