4.7 Article

Identification and comparison of cutinases for synthetic polyester degradation

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 93, Issue 1, Pages 229-240

Publisher

SPRINGER
DOI: 10.1007/s00253-011-3402-4

Keywords

Cutinase; Hydrolysis; Polymer degradation; Thermostability; pH stability; Residual activity

Funding

  1. NYU:POLY
  2. AFOSR DURIP [FA-9550-08-1-0266]
  3. NSF IUCRC
  4. NSF [0741714]

Ask authors/readers for more resources

Cutinases have been exploited for a broad range of reactions, from hydrolysis of soluble and insoluble esters to polymer synthesis. To further expand the biotechnological applications of cutinases for synthetic polyester degradation, we perform a comparative activity and stability analysis of five cutinases from Alternaria brassicicola (AbC), Aspergillus fumigatus (AfC), Aspergillus oryzae (AoC), Humicola insolens (HiC), and the well-characterized Fusarium solani (FsC). Of the cutinases, HiC demonstrated enhanced poly(epsilon-caprolactone) hydrolysis at high temperatures and under all pH values, followed by AoC and AfC. Both AbC and FsC are least stable and function poorly at high temperatures as well as at acidic pH conditions. Surface charge calculations and phylogenetic analysis reveal two important modes of cutinase stabilization: (1) an overall neutral surface charge within the crowning area by the active site and (2) additional disulfide bond formation. These studies provide insights useful for reengineering such enzymes with improved function and stability for a wide range of biotransformations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available