4.7 Article

Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 272, Issue 1562, Pages 553-560

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2004.2976

Keywords

habitat fragmentation; connectivity; genetic diversity; butterfly; microsatellite; landscape

Ask authors/readers for more resources

Habitat fragmentation is a ubiquitous by-product of human activities that can alter the genetic structure of natural populations, with potentially deleterious effects on population persistence and evolutionary potential. When habitat fragmentation results in the subdivision of a population, random genetic drift then leads to the erosion of genetic diversity from within the resulting subpopulations and greater genetic divergence among them. Theoretical and simulation analyses predict that these two main genetic effects of fragmentation, greater differentiation among resulting subpopulations and reduced genetic diversity within them, will proceed at very different rates. Despite important implications for the interpretation of genetic data from fragmented populations, empirical evidence for this phenomenon has been lacking. In this analysis, we carry out an empirical study in populations of an alpine meadow-dwelling butterfly, which have become fragmented by increasing forest cover over five decades. We show that genetic differentiation among subpopulations (G(ST)) is most highly correlated with contemporary forest cover, while genetic diversity within subpopulations (expected heterozygosity) is better correlated with the spatial pattern of forest cover 40 years in the past. Thus, where habitat fragmentation has occurred in recent decades, genetic differentiation among subpopulations can be near equilibrium while contemporary measures of within subpopulation diversity may substantially overestimate the equilibrium values that will eventually be attained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available