4.7 Article

Mesoscale model of polymer melt structure: Self-consistent mapping of molecular correlations to coarse-grained potentials

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1861455

Keywords

-

Ask authors/readers for more resources

Development and application of coarse-graining methods to condensed phases of macromolecules is an active area of research. Multiscale modeling of polymeric systems using coarse-graining methods presents unique challenges. Here we apply a coarse-graining method that self-consistently maps structural correlations from detailed molecular dynamics (MD) simulations of alkane oligomers onto coarse-grained potentials using a combination of MD and inverse Monte Carlo methods. Once derived, the coarse-grained potentials allow computationally efficient sampling of ensemble of conformations of significantly longer polyethylene chains. Conformational properties derived from coarse-grained simulations are in excellent agreement with experiments. The level of coarse graining provides a control over the balance of computational efficiency and retention of chemical identity of the underlying polymeric system. Challenges to extension and application of this and similar structure-based coarse-graining methods to model dynamics and phase behavior in polymeric systems are briefly discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available