4.6 Article

The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 10, Pages 8929-8935

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M409737200

Keywords

-

Funding

  1. NCI NIH HHS [CA53914] Funding Source: Medline
  2. NHLBI NIH HHS [HL58883] Funding Source: Medline
  3. NIGMS NIH HHS [GM58481] Funding Source: Medline

Ask authors/readers for more resources

The nitric-oxide synthases (NOSs) make nitric oxide and citrulline from L-arginine. How the bound cofactor (6R)-tetrahydrobiopterin (H4B) participates in Arg hydroxylation is a topic of interest. We demonstrated previously that H4B radical formation in the inducible NOS oxygenase domain (iNOSoxy) is kinetically coupled to the disappearance of a heme-dioxy intermediate and to Arg hydroxylation. Here we report single turnover studies that determine and compare the kinetics of these transitions in Arg hydroxylation reactions catalyzed by the oxygenase domains of endothelial and neuronal NOSs (eNOSoxy and nNOSoxy). There was a buildup of a heme-dioxy intermediate in eNOSoxy and nNOSoxy followed by a monophasic transition to ferric enzyme during the reaction. The rate of heme-dioxy decay matched the rates of H4B radical formation and Arg hydroxylation in both enzymes. The rates of H4B radical formation differed such that nNOSoxy (18 s(-1)) > iNOSoxy (11 s(-1)) > eNOSoxy (6 s(-1)), whereas the lifetimes of the resulting H4B radical followed an opposite rank order. 5MeH(4)B supported a three-fold faster radical formation and greater radical stability relative to H4B in both eNOSoxy and nNOSoxy. Our results indicate the following: (i) the three NOSs share a common mechanism, whereby H4B transfers an electron to the heme-dioxy intermediate. This step enables Arg hydroxylation and is rate-limiting for all subsequent steps in the hydroxylation reaction. (ii) A direct correlation exists between pterin radical stability and the speed of its formation in the three NOSs. (iii) Uncoupled NO synthesis often seen for eNOS at low H4B concentrations may be caused by the slow formation and poor stability of its H4B radical.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available