4.6 Article

Neurons exclusively express N-bak, a BH3 domain-only bak isoform that promotes neuronal apoptosis

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 10, Pages 9065-9073

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413030200

Keywords

-

Funding

  1. NINDS NIH HHS [NS35533] Funding Source: Medline

Ask authors/readers for more resources

Bak is generally recognized as a multidomain, proapoptotic member of the Bcl-2 family. Bak and Bax are functionally redundant in non-neuronal cells and represent a mitochondrial convergence point for cell death signaling pathways. This functional redundancy, however, may not exist in neurons in which the single deletion of Bax is sufficient to confer protection against a variety of cytotoxic insults. In the present study, we demonstrate that postnatal cortical and cerebellar granule neurons exclusively express an alternatively spliced, BH3 domain-only form of Bak (N-Bak), whereas astrocytes express only the full-length, multidomain form. Overexpression of N-Bak promotes Bax translocation in HeLa cells and induces neuronal cell death in cortical, hippocampal, and cerebellar granule neurons in a Bax-dependent manner. N-Bak interacts with Bcl-X-L but not BAX, suggesting an indirect mechanism for promoting Bax translocation to the mitochondria. N-Bak message and protein levels are elevated in cortical neurons in response to DNA damage, and subsequent induction of neuronal death is significantly delayed by expressing a full-length Bak antisense plasmid. These results demonstrate that postnatal neurons solely express a BH3 domain-only form of Bak, which contributes to DNA damage-induced neuronal apoptosis. The absence of full-length Bak expression explains the near exclusive requirement for Bax in neuronal apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available