4.6 Article

Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 10, Pages 9400-9408

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413122200

Keywords

-

Funding

  1. NIAID NIH HHS [AI53114, AI55789] Funding Source: Medline

Ask authors/readers for more resources

To avoid detection and targeting by the immune system, the plague-causing bacterium Yersinia pestis uses a type III secretion system to deliver a set of inhibitory proteins into the cytoplasm of immune cells. One of these proteins is an exceptionally active tyrosine phosphatase termed YopH, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. Because Y. pestis strains lacking YopH are avirulent, we set out to develop small molecule inhibitors for YopH. We used a novel and cost-effective approach, in which leads from a chemical library screening were analyzed and computationally docked into the crystal structure of YopH. This resulted in the identification of a series of novel YopH inhibitors with nanomolar K-i values, as well as the structural basis for inhibition. Our inhibitors lack the polar phosphate-mimicking moiety of rationally designed tyrosine phosphatase inhibitors, and they readily entered live cells and rescued them from YopH-induced tyrosine dephosphorylation, signaling paralysis, and cell death. These inhibitors may become useful for treating the lethal infection by Y. pestis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available