4.7 Review

Genome mining approach for the discovery of novel cytochrome P450 biocatalysts

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 86, Issue 4, Pages 991-1002

Publisher

SPRINGER
DOI: 10.1007/s00253-010-2450-5

Keywords

Biocatalyst; Cytochrome P450; Genome mining; Hydroxylation; Monooxygenase; Oxidation

Ask authors/readers for more resources

Cytochrome P450 enzymes (P450s) are able to regioselectively and stereoselectively introduce oxygen into organic compounds under mild reaction conditions. These monooxygenases in particular easily catalyze the insertion of oxygen into less reactive carbon-hydrogen bonds. Hence, P450s are of considerable interest as oxidation biocatalysts. To date, although several P450s have been discovered through screening of microorganisms and have been further genetically engineered, the substrate range of these biocatalysts is still limited to fulfill the requirements for a large number of oxidation processes. On the other hand, the recent rapid expansion in the number of reported microbial genome sequences has revealed the presence of an unexpectedly vast number of P450 genes. This large pool of naturally evolved P450s has attracted much attention as a resource for new oxidation biocatalysts. In this review, we focus on aspects of the genome mining approach that are relevant for the discovery of novel P450 biocatalysts. This approach opens up possibilities for exploitation of the catalytic potential of P450s for the preparation of a large choice of oxidation biocatalysts with a variety of substrate specificities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available