4.7 Article

Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 88, Issue 5, Pages 1135-1143

Publisher

SPRINGER
DOI: 10.1007/s00253-010-2769-y

Keywords

Phenylacetone monooxygenase; Baeyer-Villiger oxidation; Coenzyme specificity; Enantioselectivity

Funding

  1. EU
  2. Spanish Ministerio de Ciencia e Innovacion (MICINN)

Ask authors/readers for more resources

Type I Baeyer-Villiger monooxygenases (BVMOs) strongly prefer NADPH over NADH as an electron donor. In order to elucidate the molecular basis for this coenzyme specificity, we have performed a site-directed mutagenesis study on phenylacetone monooxygenase (PAMO) from Thermobifida fusca. Using sequence alignments of type I BVMOs and crystal structures of PAMO and cyclohexanone monooxygenase in complex with NADP(+), we identified four residues that could interact with the 2'-phosphate moiety of NADPH in PAMO. The mutagenesis study revealed that the conserved R217 is essential for binding the adenine moiety of the nicotinamide coenzyme while it also contributes to the recognition of the 2'-phosphate moiety of NADPH. The substitution of T218 did not have a strong effect on the coenzyme specificity. The H220N and H220Q mutants exhibited a similar to 3-fold improvement in the catalytic efficiency with NADH while the catalytic efficiency with NADPH was hardly affected. Mutating K336 did not increase the activity of PAMO with NADH, but it had a significant and beneficial effect on the enantioselectivity of Baeyer-Villiger oxidations and sulfoxidations. In conclusion, our results indicate that the function of NADPH in catalysis cannot be easily replaced by NADH. This finding is in line with the complex catalytic mechanism and the vital role of the coenzyme in BVMOs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available