4.7 Review

Engineering of protein secretion in yeast: strategies and impact on protein production

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 86, Issue 2, Pages 403-417

Publisher

SPRINGER
DOI: 10.1007/s00253-010-2447-0

Keywords

Yeast secretion system; Secretion pathway; Protein folding; Membrane trafficking; Protease; Glycosylation

Funding

  1. Ministry of Economy, Trade and Industry (METI)
  2. New Energy and Industrial Technology Development Organization (NEDO)

Ask authors/readers for more resources

Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available