4.7 Article

Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 85, Issue 2, Pages 285-292

Publisher

SPRINGER
DOI: 10.1007/s00253-009-2090-9

Keywords

Artemisinin; Cerebroside elicitor; Nitric oxide; Isoprenoid pathways; Hairy root culture

Funding

  1. National Natural Science Foundation of China [30772731]
  2. Natural Science Foundation of Jiangsu Province [BK2007051]
  3. 5th Jiangsu Leading Discipline [B2008048]

Ask authors/readers for more resources

This work examined the accumulation of artemisinin and related secondary metabolism pathways in hairy root cultures of Artemisia annua L. induced by a fungal-derived cerebroside (2S,2'R,3R,3'E,4E,8E)-1-O-beta-d-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. The presence of the cerebroside induced nitric oxide (NO) burst and artemisinin biosynthesis in the hairy roots. The endogenous NO generation was examined to be involved in the cerebroside-induced biosynthesis of artemisinin by using NO inhibitors, N (omega)-nitro-l-arginine methyl ester and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The gene expression and activity of 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate synthase were stimulated by the cerebroside, but more strongly by the potentiation of NO. While the mevalonate pathway inhibitor, mevinolin, only partially inhibited the induced artemisinin accumulation, the plastidic 2-C-methyl-d-erythritol 4-phosphate pathway inhibitor, fosmidomycin, nearly arrested artemisinin accumulation induced by cerebroside and the combination elicitation with an NO donor, sodium nitroprusside (SNP). With the potentiation by SNP at 10 mu M, the cerebroside elicitor stimulated artemisinin production in 20-day-old hairy root cultures up to 22.4 mg/l, a 2.3-fold increase over the control. These results suggest that cerebroside plays as a novel elicitor and the involvement of NO in the signaling pathway of the elicitor activity for artemisinin biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available