4.6 Article

The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis

Journal

JOURNAL OF IMMUNOLOGY
Volume 174, Issue 6, Pages 3534-3544

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.174.6.3534

Keywords

-

Categories

Ask authors/readers for more resources

IL-12 is a potent inducer of IFN-gamma production and promotes a protective cell-mediated immune response after Mycobacterium tuberculosis infection. Recently, the IL-12-related cytokine IL-27 was discovered, and WSX-1 was identified as one component of the IL-27R complex. To determine the functional significance of IL-27/WSX-1 during tuberculosis, we analyzed the course of infection and the immune response in WSX-1-KO mice after aerosol infection with M. tuberculosis. In the absence of WSX-1, an increased production of the proinflammatory cytokines TNF and IL-12p40 resulted in elevated CD4(+) T cell activation and IFN-gamma production, which enhanced macrophage effector functions and reduced bacterial loads. This is the first occasion of a selectively gene-deficient mouse strain showing higher levels of protective immunity against M. tuberculosis infection than wild-type mice. However, a concomitantly increased chronic inflammatory response also accelerated death of infected WSX-1-KO mice. In vitro, IL-27 induced STAT3 phosphorylation and inhibited TNF and IL-12 production in activated peritoneal macrophages, indicating a novel feedback mechanism by which IL-27 can modulate excessive inflammation. In conclusion, IL-27 both prevents optimal antimycobacterial protection and limits the pathological sequelae of chronic inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available