4.7 Article

A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 95, Issue 1, Pages 77-95

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2004.11.013

Keywords

snow-covered area; reflectance model; boreal zone; hydrological model; snow mapping

Ask authors/readers for more resources

A feasible method for mapping the fraction of Snow Covered Area (SCA) in the boreal zone is presented. The method (SCAmod) is based on a semi-empirical model, where three reflectance contributors (wet snow, snow-free ground and forest canopy), interconnected by an effective canopy transmissivity and SCA, constitute the observed reflectance from the target area. Given the reflectance observation, SCA is solved from the model. The predetermined values for the reflectance contributors can be adjusted to an optional wavelength region, which makes SCAmod adaptable to various optical sensors. The effective forest canopy transmissivity specifies the effect of forests on the local reflectance observation; it is estimated using Earth observation data similar to that employed in the actual SCA estimation. This approach enables operationl snow mapping for extensive areas, as auxiliary forest data are not needed. Our study area covers 404 000 km(2), comprising all drainage basins of Finland (with an average area of 60 km(2)) and some transboundary drainage basins common with Russia, Norway and Sweden. Applying SCAmod to NOAA/AVHRR cloud-free data acquired during melting periods 2001-2003, we estimated the areal fraction of snow cover for all the 5845 basins. The validation against in situ SCA from the Finnish snow course network indicates that with SCAmod, 15% (absolute SCA-units) accuracy for SCA is gained. Good results were also obtained from the validation against snow cover information provided by the Finnish weather station network, for example, 94% of snow-free and fully snow-covered basins were recognized. A general formula for deriving the statistical accuracy of SCA estimates provided by SCAmod is presented, complemented by the results when the AVHRR data are employed. Snow melting in Finland has been operatively monitored with SCAmod in Finnish Environment Institute (SYKE) since year 2001. The SCA estimates have been assimilated to the Finnish national hydrological modelling and forecasting system since 2003, showing a substantial improvement in forecasts. (c) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available