4.6 Article

Unified model of secondary electron cascades in diamond

Journal

JOURNAL OF APPLIED PHYSICS
Volume 97, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1853494

Keywords

-

Ask authors/readers for more resources

In this article we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of x-ray photons. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1 and 10 keV. The present article expands our earlier work [B. Ziaja, D. van der Spoel, A. Szoke, and J. Hajdu, Phys. Rev. B 64, 214104 (2001), Phys. Rev. B 66, 024116 (2002)] by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t <= 1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs following the primary impact. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available