4.8 Article

Dual electrodes oxidation of dye wastewater with gas diffusion cathode

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 39, Issue 6, Pages 1819-1826

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es049025e

Keywords

-

Ask authors/readers for more resources

The high energy cost of an electrochemical method is the fatal drawback that hinders its large scale application in wastewater treatment. In traditional single-chamber electrolysis cell, only direct oxidation at an anode exists. Although a small amount of hydrogen peroxide is produced at the cathode by reduction, it is transferred to the anode and destroyed there without adding much benefit to organic decomposition. A two-chamber electrolytic cell, connected with an electrolyte bridge, was developed in this work. In this new reactor, direct oxidation at anode and indirect oxidation by hydrogen peroxide at cathode can occur simultaneously. Therefore dual electrodes oxidation in one electrochemical reactor was achieved successfully. Compared to a traditional one cell reactor, this reactor cuts the energy cost by 50%, and thus might lead to reconsideration of the electrochemical role in wastewater treatment. A Pt/C gas diffusion electrode (GDE) is fabricated and used as a cathode fed with oxygen-containing gases to produce hydrogen peroxide. When purified air diffuses through the active layer on the GDE, oxygen is reduced to hydrogen peroxide with a high yield to decompose organics. It has been found that the direct oxidation process at an anodic zone is slightly affected by factors such as pH variation, Fe(II) existence and aeration, while indirect oxidation at the cathodic zone is strongly affected. Dye used as a model pollutant was oxidized into small organic acids in both anode and cathode regions in this electrolytic reactor. GC-MS and IR spectrum were employed to analyze the intermediates formed during the degradation. Twenty intermediates have been detected, including 14 esters, 3 acids and 3 compounds with NO2 or N-OH groups. Thereafter, the degradation pathways of dye Acid Red B are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available