4.7 Article

Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 78, Issue 3, Pages 419-429

Publisher

SPRINGER
DOI: 10.1007/s00253-007-1329-6

Keywords

deep sea water; extracellular polysaccharides; insulinotropic properties; lAetiporus sulphureus var; miniatus; RINm5F

Ask authors/readers for more resources

In the present study, optimum culture conditions for the production of extracellular polysaccharides (EPS) in submerged culture of an edible mushroom, Laetiporus sulphureus var. miniatus and their stimulatory effects on insulinoma cell (RINm5F) proliferation and insulin secretion were investigated. The maximum mycelial growth (4.1 g l(-1)) and EPS production (0.6 g l(-1)) in submerged flask culture were achieved in a medium containing 30 g l(-1) maltose, 2 g l(-1) soy peptone, and 2 mM MnSO4 center dot 5H(2)O at an initial pH 2.0 and temperature 25 degrees C. In the stirred-tank fermenter under optimized medium, the concentrations of mycelial biomass and EPS reached a maximum level of 8.1 and 3.9 g l(-1), respectively. Interestingly, supplementation of deep sea water (DSW) into the culture medium significantly increased both mycelial biomass and EPS production by 4- and 6.7-fold at 70% (v/v) DSW medium, respectively. The EPS were proved to be glucose-rich polysaccharides and were able to increase proliferation and insulin secretary function of rat insulinoma RINm5F cells, in a dose-dependent manner. In addition, EPS also strikingly reduced the streptozotocin-induced apoptosis in RINm5F cells indicating the mode of the cytoprotective role of EPS on RINm5F cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available