4.5 Article

Incorporating spectral characteristics of Pc5 waves into three- dimensional radiation belt modeling and the diffusion of relativistic electrons

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004JA010760

Keywords

-

Ask authors/readers for more resources

[1] The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power are included in this model by incorporating published ground-based magnetometer data. It is demonstrated here that realistic spectral characteristics play a significant role in the rate of diffusion of relativistic electrons via drift resonance with poloidal mode ULF waves. Radial diffusion rates including bounce motion show a weak pitch angle dependence for alpha(eq) >= 50 degrees (lambda <= 20 degrees) for a power spectral density which is L-independent. The data-based model for greater power at higher L values yields stronger diffusion at alpha(eq) = 90 degrees. The L-6 dependence of the diffusion coefficient which is obtained for a power spectral density which is L-independent is amplified by power spectral density which increases with L. During geomagnetic storms when ULF wave power is increased, ULF waves are a significant driver of increased fluxes of relativistic electrons inside geosynchronous orbit. Diffusion timescales obtained here, when frequency and L dependence comparable to observations of ULF wave power are included, support this conclusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available