4.4 Article Proceedings Paper

Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations:: rigorous reduced-basis a posteriori error bounds

Journal

Publisher

WILEY
DOI: 10.1002/fld.867

Keywords

reduced-basis; a posteriori error estimation; output bounds; offline-online procedures; incompressible Navier-Stokes; natural convection; parametrized partial differential equations

Ask authors/readers for more resources

We present a technique for the evaluation of linear-functional outputs of parametrized elliptic partial differential equations in the context of deployed (in service) systems. Deployed systems require real-time and certified output prediction in support of immediate and safe, (feasible) action. The two essential components of our approach are (i) rapidly, uniformly convergent reduced-basis approximations, and (ii) associated rigorous and sharp a posteriori error bounds; in both components we exploit affine parametric structure and offline-online computational decompositions to provide real-time deployed response. In this paper we extend our methodology to the parametrized steady incompressible Navier-Stokes equations. We invoke the Brezzi-Rappaz-Raviart theory for analysis of variational approximations of non-linear partial differential equations to construct rigorous, quantitative, sharp, inexpensive a posteriori error estimators. The crucial new contribution is offline-online computational procedures for calculation of (a) the dual norm of the requisite residuals, (b) an upper bound for the 'L-4(Omega) - H-1(Omega)' Sobolev embedding continuity constant, (c) a lower bound for the Babuska inf-sup stability 'constant,' and (d) the adjoint contributions associated with the output. Numerical results for natural convection in a cavity confirm the rapid convergence of the reduced-basis approximation, the good effectivity of the associated a posteriori error bounds in the energy and output norms, and the rapid deployed response. Copyright (c) 2005 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available