4.7 Article

Non-Markovian stochastic Schrodinger equations in different temperature regimes: A study of the spin-boson model

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1867377

Keywords

-

Ask authors/readers for more resources

Stochastic Schrodinger equations are used to describe the dynamics of a quantum open system in contact with a large environment, as an alternative to the commonly used master equations. We present a study of the two main types of non-Markovian stochastic Schrodinger equations, linear and nonlinear ones. We compare them both analytically and numerically, the latter for the case of a spin-boson model. We show in this paper that two linear stochastic Schrodinger equations, derived from different perspectives by Diosi, Gisin, and Strunz [Phys. Rev. A 58, 1699 (1998)], and Gaspard and Nagaoka [J. Chem. Phys. 13, 5676 (1999)], respectively, are equivalent in the relevant order of perturbation theory. Nonlinear stochastic Schrodinger equations are in principle more efficient than linear ones, as they determine solutions with a higher weight in the ensemble average which recovers the reduced density matrix of the quantum open system. However, it will be shown in this paper that for the case of a spin-boson system and weak coupling, this improvement does only occur in the case of a bath at high temperature. For low temperatures, the sampling of realizations of the nonlinear equation is practically equivalent to the sampling of the linear ones. We study further this result by analyzing, for both temperature regimes, the driving noise of the linear equations in comparison to that of the nonlinear equations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available