4.7 Article

Stimuli-responsive polymers based on L-phenylalanine residues: Protonation thermodynamics of free polymers and cross-linked hydrogels

Journal

MACROMOLECULES
Volume 38, Issue 6, Pages 2460-2468

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma047652i

Keywords

-

Ask authors/readers for more resources

Vinyl polymers carrying L-phenylalanine residues were synthesized in the free and in the cross-linked hydrogel form, as homo- and copolymers with N-isopropylacrylamide (NIPAAm). The protonation reaction thermodynamics of the COO- group were studied in aqueous media, at different temperatures and at increased concentrations of sodium chloride, mainly by potentiometry and solution calorimetry. The soluble polymer, namely poly(N-acryloyl-L-phenylalanine), and its copolymers with low NIPAAm content displayed characteristic features. Their basicity constants (log K), as well as the enthalpy (-Delta H degrees) changes in relation to a (degree of protonation) showed an abrupt drop at alpha = 0.5. This was ascribed to the formation of hydrogen bonds between the protonated and the ionized neighboring COO- groups. The process was driven by the side-chain aromatic rings that improved hydrophobic interactions. The entropy (AS') changes sharply increased as a result of the increased macromolecular conformational freedom and the release of water molecules surrounding the hydrophilic groups of the polymer. The corresponding cross-linked polymers formed hydrogels that were responsive to pH, temperature, and ionic strength. The two hydrogels, P9 (homopolymer with 9 mol% cross-links) and CP2 (copolymer with 90 mol% of NIPAAm and 2 mol% cross-links), were characterized for their pH- and temperature-responsive behavior by equilibrium and oscillatory swelling studies. They demonstrated a strong pH-dependent volume phase-transition and an unusual sodium chloride phase-transition phenomenon. Moreover, the hydrogel CP2 exhibited a temperature-dependent volume phase-transition (LCST, lower critical solution temperature) behavior in aqueous solution, where the LCST decreased by lowering the pH. It was nontoxic against the RAW264 cell line.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available