4.6 Article

The islet β cell-enriched MafA activator is a key regulator of insulin gene transcription

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 12, Pages 11887-11894

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M409475200

Keywords

-

Funding

  1. NIDDK NIH HHS [P01-DK42502, P60 DK20593, R01 DK058096, R01-DK58096] Funding Source: Medline

Ask authors/readers for more resources

The islet-enriched MafA, PDX-1, and BETA2 activators contribute to both beta cell-specific and glucose-responsive insulin gene transcription. To investigate how these factors impart activation, their combined impact upon insulin enhancer-driven expression was first examined in non-beta cell line transfection assays. Individual expression of PDX-1 and BETA2 led to little or no activation, whereas MafA alone did so modestly. MafA together with PDX-1 or BETA2 produced synergistic activation, with even higher insulin promoter activity found when all three proteins were present. Stimulation was attenuated upon compromising either MafA transactivation or DNA-binding activity. MafA interacted with endogenous PDX-1 and BETA2 in coimmunoprecipitation and in vitro GST pull-down assays, suggesting that regulation involved direct binding. Dominant-negative acting and small interfering RNAs of MafA also profoundly reduced insulin promoter activity in beta cell lines. In addition, MafA was induced in parallel with insulin mRNA expression in glucose-stimulated rat islets. Insulin mRNA levels were also elevated in rat islets by adenoviral-mediated expression of MafA. Collectively, these results suggest that MafA plays a key role in coordinating and controlling the level of insulin gene expression in islet beta cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available