4.6 Article

Wnt-dependent regulation of the E-cadherin repressor snail

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 12, Pages 11740-11748

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413878200

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA071699, R01 CA085463, R01 CA088308] Funding Source: Medline

Ask authors/readers for more resources

Down-regulation of E-cadherin marks the initiation of the epithelial-mesenchymal transition, a process exploited by invasive cancer cells. The zinc finger transcription factor, Snail, functions as a potent repressor of E-cadherin expression that can, acting alone or in concert with the Wnt/beta-catenin/T cell factor axis, induce an epithelial-mesenchymal transition. Although mechanisms that coordinate signaling events initiated by Snail and Wnt remain undefined, we demonstrate that Snail displays beta-catenin-like canonical motifs that support its GSK3 beta-dependent phosphorylation, beta-TrCP-directed ubiquitination, and proteasomal degradation. Accordingly, Wnt signaling inhibits Snail phosphorylation and consequently increases Snail protein levels and activity while driving an in vivo epithelial-mesenchymal transition that is suppressed following Snail knockdown. These findings define a potential mechanism whereby Wnt signaling stabilizes Snail and beta-catenin proteins in tandem fashion so as to cooperatively engage transcriptional programs that control an epithelial-mesenchymal transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available