4.7 Article

Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 119, Issue 1, Pages 196-205

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2004.09.004

Keywords

microreactor; micromachining; solid-source doping; membrane; shadow mask; thin-film deposition

Ask authors/readers for more resources

In this paper critical steps in the fabrication process of a microreactor for high-temperature catalytic partial oxidation gas phase reactions are evaluated. The microreactor contains a flow channel etched in silicon, capped with an ultrathin composite membrane consisting of silicon and silicon nitride layers, on which on the topside thin-film heaters and sensors, and on the other side a thin-film catalyst patch are placed. The membrane is designed to have specific heat conductivity and mechanical properties. The paper focuses on three fabrication issues: definition and etching of sub-micron uniform single-crystalline silicon membranes, deposition of well-defined heater structures and temperature sensors on a thin composite membrane, and deposition of well-defined catalytic patches on the same membrane. For the latter two processes novel micromachined shadow masks were developed. Preliminary experiments on the controlled oxidation of hydrogen gas in the explosive regime are discussed, which experiments confirm that heat management in the microreactor is excellent. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available