4.7 Article

Nonlinear compensation of active electrostatic bearings supporting a spherical rotor

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 119, Issue 1, Pages 177-186

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2004.08.030

Keywords

dynamic stiffness; feedback linearization; electrostatic bearing; electrostatic suspension; digital control

Ask authors/readers for more resources

This paper proposes a nonlinear compensation scheme to deal with the nonlinear, uncertain dynamics of electrostatic bearing systems. A feedback linearization technique that utilizes the approximate nonlinear model of the electric field distribution is employed to compensate for the unstable position stiffness inherent in electrostatic suspension for global stability and enhanced dynamic performance. Robustness of the nonlinear compensation to the model uncertainty is analytically verified in an effort to obtain a more consistent and predictable performance. Theoretical relationship is also developed to relate the characteristics of the proportional-integral-derivative (PID) controller to the dynamic stiffness properties of the linearized electrostatic bearing system. The performance of the proposed nonlinear compensation algorithm is experimentally investigated on a three-degree-of-freedom (3-DOF) electrostatic bearing supporting a spherical rotor. The experimental results demonstrate the superiority of the nonlinear controller over a classical linear control system in transient response, stability, dynamic stiffness, and force-disturbance rejection performance. (c) 2004 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available