4.8 Article

Size-dependent phase transformation kinetics in nanocrystalline ZnS

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 12, Pages 4523-4529

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja048121c

Keywords

-

Ask authors/readers for more resources

Nanocrystalline ZnS was coarsened under hydrothermal conditions to investigate the effect of particle size on phase transformation kinetics. Although bulk wurtzite is metastable relative to sphalerite below 1020 degrees C at low pressure, sphalerite transforms to wurtzite at 225 degrees C in the hydrothermal experiments. This indicates that nanocrystalline wurtzite is stable at low temperature. High-resolution transmission electron microscope data indicate there are no pure wurtzite particles in the coarsened samples and that wurtzite only grows on the surface of coarsened sphalerite particles. Crystal growth of wurtzite stops when the diameter of the sphalerite-wurtzite interface reaches similar to 22 nm. We infer that crystal growth of wurtzite is kinetically controlled by the radius of the sphalerite-wurtzite interface. A new phase transformation kinetic model based on collective movement of atoms across the interface is developed to explain the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available