4.6 Article

Evolution of entanglement entropy in one-dimensional systems

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2005/04/P04010

Keywords

conformal field theory; integrable spin chains (vertex models); quantum phase transitions (theory); entanglement in extended quantum systems (theory)

Ask authors/readers for more resources

We study the unitary time evolution of the entropy of entanglement of a one-dimensional system between the degrees of freedom in an interval of length l and its complement, starting from a pure state which is not an eigenstate of the Hamiltonian. We use path integral methods of quantum field theory as well as explicit computations for the transverse Ising spin chain. In both cases, there is a maximum speed v of propagation of signals. In general the entanglement entropy increases linearly with time t up to t = l/2v, after which it saturates at a value proportional to l, the coefficient depending on the initial state. This behaviour may be understood as a consequence of causality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available