4.6 Article

A novel hyperthermostable 5′-deoxy-5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus

Journal

FEBS JOURNAL
Volume 272, Issue 8, Pages 1886-1899

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2005.04619.x

Keywords

5 '-deoxy-5 '-methylthioadenosine phosphorylase; disulfide bonds; hyperthermostability; purine nucleoside phosphorylase; Sulfolobus solfataricus

Ask authors/readers for more resources

We report herein the first molecular characterization of 5'-deoxy-5'-methylthio-adenosine phosphorylase II from Sulfolobus solfataricus (SsMTAPII). The isolated gene of SsMTAPII was overexpressed in Escherichia coli BL21. Purified recombinant SsMTAPII is a homohexamer of 180 kDa with an extremely low K-m (0.7 mu M) for 5'-deoxy-5'-methylthioadenosine. The enzyme is highly thermophilic with an optimum temperature of 120 degrees C and extremely thermostable with an apparent T-m of 112 degrees C that increases in the presence of substrates. The enzyme is characterized by high kinetic stability and remarkable SDS resistance and is also resistant to guanidinium chloride-induced unfolding with a transition midpoint of 3.3 M after 22-h incubation. Limited proteolysis experiments indicated that the only one proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. Moreover, the binding of 5'-deoxy-5'-methylthioadenosine induces a conformational transition that protected the enzyme against protease inactivation. By site-directed mutagenesis we demonstrated that Cys259, Cys261 and Cys262 play an important role in the enzyme stability since the mutants C259S/C261S and C262S show thermophilicity and thermostability features significantly lower than those of the wild-type enzyme. In order to get insight into the physiological role of SsMTAPII a comparative kinetic analysis with the homologous 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was carried out. Finally, the alignment of the protein sequence of SsMTAPII with those of SsMTAP and human 5'-deoxy-5'-methylthioadenosine phosphorylase (hMTAP) shows several key residue changes that may account why SsMTAPII, unlike hMTAP, is able to recognize adenosine as substrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available