4.6 Article

Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00911.2004

Keywords

shear stress; blood pressure; functional capillary density

Funding

  1. NHLBI NIH HHS [R01 HL 62318, R24 HL 64395, R01 HL 62354] Funding Source: Medline

Ask authors/readers for more resources

Extreme hemodilution was performed in the hamster chamber window model using 6% Dextran 70, lowering systemic hematocrit by 60%. Animals were subsequently divided into three groups and hemodiluted to a hematocrit of 11% using 6% Dextran 70, 6% Dextran 500, and a 4% Dextran 70 + 0.7% alginate solution (n = 6 each group). Final plasma viscosities were 1.4 +/- 0.2, 2.2 +/- 0.1, and 2.7 +/- 0.2 cp, respectively, (P < 0.05, high viscosity vs. low viscosity). Blood viscosities were 2.1 +/- 0.2, 2.9 +/- 0.4, and 3.9 +/- 0.3 cp, respectively. The lowest blood and plasma viscosity group had a significantly lower functional capillary density, 37 +/- 16%, whereas the two high-viscosity solutions were 71 +/- 15% and 76 +/- 12% (P < 0.05, high viscosity vs. low viscosity), respectively. Arteriolar and venular flow in the Dextran 500 and alginate groups was higher than baseline (i.e., normal nontreated animals), whereas the low-viscosity group showed a reduction in flow. These microvascular changes were paralleled by changes in base excess, which was negative for the Dextran 70 group and positive for the other groups. However, tissue Po-2 was uniformly low for all groups ( average of 1.4 mmHg). Calculation of tissue oxygen consumption in the window chamber based on the microvascular data, flow, and intravascular Po-2 showed that only the alginate + Dextran 70 solution-exchanged animals returned to baseline oxygen consumption, whereas the other groups were lower than baseline (P < 0.05). These results show that hemodilution performed with high-viscosity plasma expanders yields systemic arterial pressures and functional capillary densities that are significantly higher (P < 0.05) than those obtained with 6% Dextran 70, a fluid whose viscosity is similar to that of plasma. A condition for obtaining these results is that the oncotic pressure of the plasma expander be titrated to near normal, so that autotransfusion of fluid from the tissue into the vascular compartment does not reduce the effects of increasing plasma viscosity and increased shear stress on the microvascular wall.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available