4.5 Article

Suramin disrupts receptor-G protein coupling by blocking association of G protein α and βγ subunits

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.078311

Keywords

-

Ask authors/readers for more resources

Most drugs target a receptor for a hormone or neurotransmitter. A newer strategy for drug development is to target a downstream signaling element, such as the G protein associated with a receptor. Suramin is considered a lead compound targeting this moiety. It inhibits binding of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to G proteins and reduces agonist binding to G protein-coupled receptors. Suramin is thought to uncouple the G protein from its associated receptor, although there is no direct evidence for this mechanism. We have now examined the effect of suramin on G protein signaling for the vasoactive intestinal peptide (VIP) receptor in lung. The primary experimental strategy was a two-step cross-linking reaction that covalently captures the VIP-receptor-G protein ternary complex. Such cross-linking provided the first direct evidence that suramin physically disrupts receptor-G protein coupling. We investigated how this uncoupling relates to the inhibition of GTP gamma S binding. Suramin indiscriminately hindered the dissociation of various guanine nucleotides from the G protein, implying that its action is not allosteric. Further cross-linking studies suggested that suramin does not obstruct the receptor docking site directly but appears to block the interface between G protein alpha and beta gamma subunits. Observations with a purified system of recombinant G protein subunits without a receptor yielded direct evidence that suramin suppresses the association between these subunits. This action can explain how it both disrupts receptor-G protein coupling and inhibits guanine nucleotide release. The improved understanding of suramin's action advances the development of selective inhibitors of G protein signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available