4.7 Article

Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine

Journal

FOOD MICROBIOLOGY
Volume 22, Issue 2-3, Pages 169-178

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fm.2004.07.003

Keywords

wine yeast; stabilisation; SO2; dimethyldicarbonate

Ask authors/readers for more resources

The alcoholic fermentation of Botrytis-affected wines is stopped by the addition of high concentrations of sulfur dioxide (SO2). The natural microbial unstability of these wines and the binding phenomena forces winemakers to periodically add sulfur dioxide during maturation, leading to a high concentration of a maximum of 400 mg/l in the bottled wine. Dimethyldicarbonate (DMDC) is now considered as a reliable fungicide which could be partially used instead of SO2, especially just before bottling. This study investigated the use of DMDC to stop alcoholic fermentation. The experiment was carried out on pure cultures of three yeast species present in this type of wine (Saccharomyces cerevisiae, Candida stellata and Zygosaccharomyces bailiff). The results were very promising and suggested that DMDC was more effective than SO2. The yeast cells died after the addition of DMDC whereas they partially entered into a viable but non-culturable (VBNC) state with SO2. However, the same experiment carried out on botrytized must, whose fermentation was carried out using indigenous microflora, was less conclusive. It pointed out that DMDC, used in a concentration of 200 mg/l, was more effective than SO2 but leading to the same results: the entering of a part of the cells into a VBNC state. DMDC could be used to stop alcoholic fermentation, but could not replace SO2. Nevertheless, the concentrations of SO2 added in this type of wine could be reduced in this way. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available