4.3 Article

Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties

Journal

CRYOBIOLOGY
Volume 50, Issue 2, Pages 183-192

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.cryobiol.2004.12.007

Keywords

cryosurgery; selective freezing; phase change; thermal properties; tumor tissue; numerical modeling; minimally invasive injection

Ask authors/readers for more resources

Recently, we proposed a method for controlling the extent of freezing during cryosurgery by percutaneously injecting some solutions with particular thermal properties into the target tissues. In order to better understand the mechanism of the enhancement of freezing by these injections, a new numerical algorithm was developed to simulate the corresponding heat transfer process that is involved. The three-dimensional phase change processes in biological tissues subjected to cryoprobe freezing, with or without injection, were compared numerically. Two specific cases were investigated to illustrate the selective freezing method: the injection of solutions with high thermal conductivity; the injection of solutions with low latent heat. It was found that the localized injection of such solutions could significantly enhance the freezing effect and decrease the lowest temperature in the target tissues. The result also suggests that the injection of these solutions may be a feasible and flexible way to control the size of the ice ball and its direction of growth during cryosurgery, which will help to optimize the treatment process. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available