4.7 Review

Constraints on Dirac-Born-Infeld type dark energy models from varying alpha

Journal

PHYSICAL REVIEW D
Volume 71, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.71.083005

Keywords

-

Ask authors/readers for more resources

We study the variation of the effective fine-structure constant alpha for Dirac-Born-Infeld (DBI) type dark energy models. The DBI action based on string theory naturally gives rise to a coupling between gauge fields and a scalar field responsible for accelerated expansion of the universe. This leads to the change of alpha due to a dynamical evolution of the scalar field, which can be compatible with the recently observed cosmological data around the redshift z less than or similar to 3. We place constraints on several different DBI models including exponential, inverse power-law and rolling massive scalar potentials. We find that these models can satisfy the varying alpha constraint provided that mass scales of the potentials are fine-tuned. When we adopt the mass scales which are motivated by string theory, both exponential and inverse power-law potentials give unacceptably large change of alpha, thus ruled out from observations. On the other hand the rolling massive scalar potential is compatible with the observationally allowed variation of alpha. Therefore the information of varying alpha provides a powerful way to distinguish between a number of string-inspired DBI dark energy models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available